This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Research on pattern classification with binary-output networks is surveyed, including a discussion of the relevance of the Vapnik-Chervonenkis dimension, and calculating estimates of the dimension for several neural network models. A model of classification by real-output networks is developed, and the usefulness of classification with a ‘large margin’ is demonstrated. The authors explain the role of scale-sensitive versions of the Vapnik-Chervonenkis dimension in large margin classification, and in real prediction. They also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient constructive learning algorithms. The book is self-contained and is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics.
Martin Anthony og Peter L Bartlett: Neural Network Learning – Theoretical Foundations
175 kr.
Forfattere: Martin Anthony, Peter L Bartlett
Forlag: Cambridge University Press
Udgivelsesår: 2009
Stand: Pænt eksemplar
Forlag: Cambridge University Press
Udgivelsesår: 2009
Stand: Pænt eksemplar
På lager: 1 på lager
Varenummer (SKU): BB23111
Kategorier: Faglitteratur, Hjernen, Naturvidenskab
Tags: Hjernen, Martin Anthony og Peter L Bartlett, neuro
Relaterede varer
-
Naturvidenskab
Tor Nørretranders: Se frem – fra opløsningstid til oplysningstid
100 kr. Tilføj til kurv